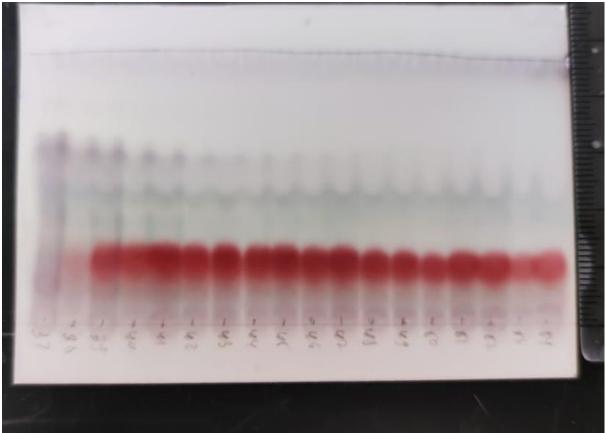
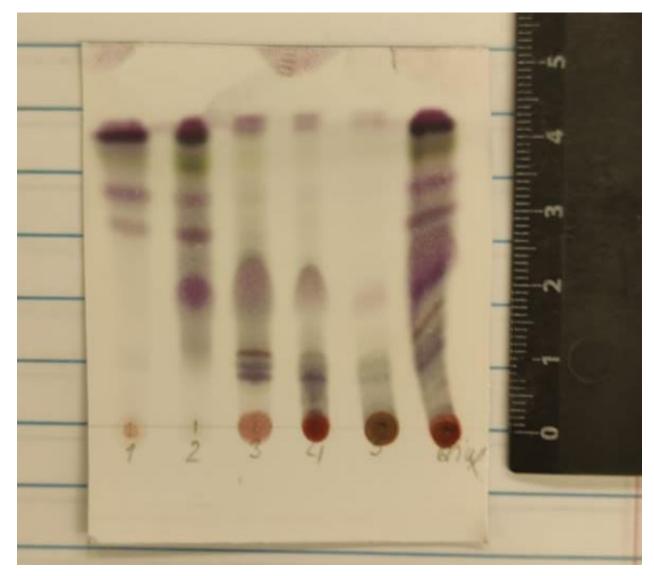
Brief information about the project

Name of the	AP19677518 «Development of a rational technology for obtaining new
project	substances from Kazakhstani wild-growing plants, their standardization,
r J	introduction of technological scheme of their production»
Relevance	The relevance and importance of developing technology for production
	ϕ new highly effective and safe medicinal substances obtained based on
	Kazakh plants that meet pharmacopoeial requirements lies in the need to
	increase the share of domestic medicines in the pharmaceutical market of
	Kazakhstan. The lack of necessary medicines in the country is also
	evidenced by negative data on the provision of medicines to the population
	in the context of COVID-19. The implementation of this Project will have
	great scientific and practical significance not only on a national but also on
	an international scale, since it will contribute to the production of highly
	effective substances, based on which safe and high-quality medicines with
	pronounced immunomodulatory and anti-inflammatory activity will be
	obtained. The implementation of the Project results into production will have
	an impact on the country's export potential and on strengthening its image
	in the international market.
Purpose	Development and creation of a rational and effective technology for
	obtaining new, original, import-substituting medicinal substances with
	immunomodulatory and anti-inflammatory effects based on domestic wild
	plants: Begger's rose hips (Rosa beggeriana Schrenk), sea buckthorn
	(Hippophae Rhamnoides L.) and narrow-leaved kermek (Limonium
	<i>leptophyllum</i>), their standardization and production of pilot industrial
	batches in accordance with pharmacopoeial requirements and international
	standards.
Objectives	Task 1:
	-Harvesting of plants growing in Kazakhstan: Rosa beggeriana,
	Hippophae rhamnoides, Limonium leptophyllum, their processing,
	assessment of quality;
	-Extraction by different methods: maceration, ultrasound-assisted and
	CO2 extraction of optimal technologies for obtaining substances from Rosa beggeriana (RbS-1, RbS-2, RbS-3), Hippophae rhamnoides (HR-1, HR-2,
	HR-3), Limonium leptophyllum (L-1, L-2, L-3);
	Task 2:
	-Isolation of fractions of hydrophobic and flavonoids from substances,
	their separation and identification of obtained individual compounds by a
	complex of physical and chemical methods;
	-Periodic control of stability of stored samples;
	- obtaining three pilot industrial series of substances selected during the
	experiment for each type of drug, validating their production technologies
	with the preparation of reports.
	Task 3:
	- Isolation of hydrolyzable, condensed tannins and polysaccharides
	from substances, their separation and identification of isolated individual
	compounds;
	- periodic monitoring of the stability of the test samples; - and report
	preparation;
	- development and preparation of regulatory documents for the samples
	- development and preparation of regulatory documents for the samples

	T
Expected and	An optimal technology for obtaining the substances RbS-1, RbS-2,
achieved results	RbS-3, HR-1, HR-2, HR-3, L-1, L-2, L-3 has been developed, based on
	determining the degree of grinding of the drug, choosing the appropriate
	extractant, varying its ratio with raw materials, temperature, duration and
	frequency of extractions with assessment of the yield of substances and the
	quantitative content of the main groups of biologically active substances in
	them. The quality indicators of the obtained substances were determined and
	their development was carried out. Samples were laid to check the stability
	of the studied samples of plants and substances by monitoring their quality
	indicators to establish their shelf life, storage and transportation conditions.
	The immunomodulatory and anti-inflammatory activities of the substances
	RbS-1, RbS-2, RbS-3, L-1, L-2, L-3 have been established. Previously, the
	chemical composition of rose hips of the Rosa beggeriana Schrenk species
	has not been studied, so there are no articles on isolated compounds from
	this plant species. Fractionation of leaves and fruits of Rosa beggeriana
	Schrenk led to the isolation and structure elucidation of 7 compounds,
	including phytosterols, triterpenoids, polyphenols and a mixture of fatty
	acids. β-sitosterol, betulin, (+)-catechin, lupeol and ethyl linoleate have
	already been isolated from the genus Rosa, but not from Rosa beggeriana
	Schrenk. Compounds such as 3b,23-dihydroxyur-12-ene and ethyl
	linolenoate were first isolated for Rosa and Rosa beggeriana Schrenk. Based
	on these results, an article was published in a highly rated journal.
Research team	Zhusupova Galiya Eventaevna – Leading Researcher - h-index – 6
members with	(WoS и Scopus)
their identifiers	• Web of Science ResearcherID: B-1053-2015;
(Scopus Author	https://www.webofscience.com/wos/author/record/1060841
ID, Researcher	• ORCID: 0000-0001-9133-2040
ID, ORCID, if	https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0001-
available) and	9133-2040&authorId=8323897200&origin=AuthorProfile&orcId=0000-
links to relevant	0001-9133-2040&category=orcidLink
profiles	• Scopus Author ID: 8323897200,
	https://www.scopus.com/authid/detail.uri?authorId=8323897200
	Aituarova Aigerim Shakirovna - Researcher - h-index – 1 (WoS и
	Scopus)
	• Web of Science ResearcherID: GYD-7218-2022).
	https://www.webofscience.com/wos/author/record/34877436
	• ORCID: https://orcid.org/0000-0002-4317-2334.
	https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0002-4317-
	2334&authorId=57330660400&origin=AuthorProfile&orcId=0000-0002-
	4317-2334&category=orcidLink
	• Scopus Author ID: 57330660400
	https://www.scopus.com/authid/detail.uri?authorId=57330660400
	Abilov Zharylkasyn Abduvakhitovich - Leading Researcher - h-index –
	10 (Scopus), 9 (WoS)
	Web of Science ResearcherID:CCA-1361-2022
	https://www.webofscience.com/wos/author/record/611967
	• Scopus author ID: 6602837088
	https://www.scopus.com/authid/detail.uri?authorId=6602837088

	Zhusupova Aizhan Izbasarovna – Senior Researcher - h-index – 3 (WoS
	и Scopus)
	• Web of Science ResearcherID O-2108-2014,
	(https://www.webofscience.com/wos/author/record/110980)
	ORCID ID 0000-0001-6561-2268,
	https://www.scopus.com/redirect.uri?url=https://orcid.org/0000-0001-
	6561-2268&authorId=35148696500&origin=AuthorProfile&orcId=0000-
	0001-6561-2268&category=orcidLink
	Scopus Author ID 35148696500
	https://www.scopus.com/authid/detail.uri?authorId=35148696500
	Budach Yaroslavna Mikhailovna – Senior Researcher
	Omarova Gulshara Orazovna - engineer
	Asetova Aizhan Askarkyzy - laboratory assistant
	Asetova Balzhan Askarkyzy - laboratory assistant
	Sapashov Atabek Tolkynovich - laboratory assistant
	Kazhiakbarova Madina Kuanyshevna - laboratory assistant
	Seitova Dana Alisherovna - laboratory assistant
List of	Aituarova, Aigerim, Galiya E. Zhusupova, Aizhan Zhussupova, and
publications	Samir A. Ross. "Study of the Chemical Composition of Rosa beggeriana
with links to	Schrenk's Fruits and Leaves." Plants 12, no. 18 (2023): 3297.
them	Ссылка на сайт: https://www.mdpi.com/2223-7747/12/18/3297
	PDF версия: https://www.mdpi.com/2223-7747/12/18/3297/pdf
Patents	




Photos of the studied plant species are attached

